ray-tracer-comp371/src/RayTracer.cc
2024-03-19 20:33:17 -04:00

152 lines
4.4 KiB
C++

#include "RayTracer.h"
#include "HitRecord.h"
#include "Output.h"
#include "Parser.h"
#include "Progress.h"
#include "Ray.h"
#include <Eigen/Core>
#include <cmath>
#include <iostream>
#include <queue>
using Eigen::VectorXi;
using std::priority_queue;
// help function declarations
int getGridWidth(VectorXi);
int getGridHeight(VectorXi);
int getRayNumber(VectorXi);
Ray getRay(int, int, const Vector3f &, const Vector3f &, const Vector3f &);
Ray getRay(int, int, int, int, const Vector3f &, const Vector3f &,
const Vector3f &, const Vector3f &, const Vector3f &);
void writeColor(int, const Vector3f &);
Vector3f trace();
void RayTracer::run() {
parse();
for (auto scene : scenes) {
Scene::current = scene;
render();
Output::current->write();
}
}
void RayTracer::parse() {
for (auto i = json["output"].begin(); i != json["output"].end(); ++i)
scenes.push_back(Parser::getScene(*i));
for (auto i = json["geometry"].begin(); i != json["geometry"].end(); ++i)
geometries.push_back(Parser::getGeometry(*i));
for (auto i = json["light"].begin(); i != json["light"].end(); ++i)
lights.push_back(Parser::getLight(*i));
}
void RayTracer::render() {
int width = Scene::current->width();
int height = Scene::current->height();
Vector3f cameraPos = Scene::current->center();
Vector3f lookAt = Scene::current->lookAt();
float vpHeight =
2 * tan(Scene::current->fov() / 180 * M_PI / 2) * lookAt.norm();
float vpWidth = vpHeight * width / height;
Vector3f u = Vector3f(vpWidth, 0, 0);
Vector3f v = Vector3f(0, -vpHeight, 0);
Vector3f du = u / width;
Vector3f dv = v / height;
Vector3f vpUpperLeft = cameraPos + lookAt - u / 2.0 - v / 2.0;
Vector3f pxUpperLeft = vpUpperLeft + (du + dv) / 2.0;
Output::current = new Output(Scene::current->name(), width, height);
VectorXi data = Scene::current->raysPerPixel();
int gridWidth = getGridWidth(data);
int gridHeight = getGridHeight(data);
int raysPerPixel = getRayNumber(data);
Vector3f gdu = Vector3f::Zero();
Vector3f gdv = Vector3f::Zero();
if (gridWidth > 1 || gridHeight > 1) {
gdu = du / gridWidth;
gdv = dv / gridHeight;
}
for (int y = 0; y < height; ++y) {
// print progress bar
utils::Progress::of((y + 1.0f) / height);
for (int x = 0; x < width; ++x) {
Vector3f color = Scene::current->backgroundColor();
if (Scene::current->globalIllum()) {
for (int j = 0; j < gridHeight; ++j)
for (int i = 0; i < gridWidth; ++i) {
Ray ray = getRay(x, y, i, j, vpUpperLeft, du, gdu, dv, gdv);
color = trace();
}
} else {
Ray ray = getRay(x, y, pxUpperLeft, du, dv);
priority_queue<HitRecord> records;
for (auto g : geometries) {
Optional<float> t = g->intersect(ray);
if (t.hasValue())
records.push(HitRecord(t.value(), ray, g));
}
if (!records.empty()) {
HitRecord hit = records.top();
hit.calcNormal();
color = calculateColor(hit, y * width + x);
}
}
writeColor(y * width + x, color);
}
}
std::cout << std::endl;
}
Vector3f RayTracer::calculateColor(const HitRecord &hit, int i) const {
Vector3f result(0, 0, 0);
for (auto light : lights)
result += light->isUse() ? light->illumination(hit, geometries)
: Vector3f::Zero();
return result.cwiseMax(0.0f).cwiseMin(1.0f);
}
// helper functions
int getGridWidth(VectorXi data) {
return data.size() != 2 && data.size() != 3 ? 1 : data.x();
}
int getGridHeight(VectorXi data) {
return data.size() == 2 ? data.x() : (data.size() == 3 ? data.y() : 1);
}
int getRayNumber(VectorXi data) {
return data.size() == 2 ? data.y() : (data.size() == 3 ? data.z() : 1);
}
Ray getRay(int x, int y, const Vector3f &upperLeft, const Vector3f &du,
const Vector3f &dv) {
Vector3f camPos = Scene::current->center();
return Ray(camPos, upperLeft + x * du + y * dv - camPos);
}
Ray getRay(int x, int y, int i, int j, const Vector3f &upperLeft,
const Vector3f &du, const Vector3f &gdu, const Vector3f &dv,
const Vector3f &gdv) {
Vector3f camPos = Scene::current->center();
return Ray(camPos, upperLeft + x * du + i * gdu + y * dv + j * gdv - camPos);
}
void writeColor(int i, const Vector3f &color) {
Output::current->r(i, color.x());
Output::current->g(i, color.y());
Output::current->b(i, color.z());
}
Vector3f trace() { return Vector3f::Zero(); }